Mathematical model to predict regions of chromatin attachment to the nuclear matrix.
نویسندگان
چکیده
The potentiation and subsequent initiation of transcription are complex biological phenomena. The region of attachment of the chromatin fiber to the nuclear matrix, known as the matrix attachment region or scaffold attachment region (MAR or SAR), are thought to be requisite for the transcriptional regulation of the eukaryotic genome. As expressed sequences should be contained in these regions, it becomes significant to answer the following question: can these regions be identified from the primary sequence data alone and subsequently used as markers for expressed sequences? This paper represents an effort toward achieving this goal and describes a mathematical model for the detection of MARs. The location of matrix associated regions has been linked to a variety of sequence patterns. Consequently, a list of these patterns is compiled and represented as a set of decision rules using an AND-OR formulation. The DNA sequence was then searched for the presence of these patterns and a statistical significance was associated with the frequency of occurrence of the various patterns. Subsequently, a mathematical potential value,MAR-Potential, was assigned to a sequence region as the inverse proportion to the probability that the observed pattern population occurred at random. Such a MAR detection process was applied to the analysis of a variety of known MAR containing sequences. Regions of matrix association predicted by the software essentially correspond to those determined experimentally. The human T-cell receptor and the DNA sequence from the Drosophila bithorax region were also analyzed. This demonstrates the usefulness of the approach described as a means to direct experimental resources.
منابع مشابه
A role for chromatin topology in imprinted domain regulation.
Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with ...
متن کاملComponents of the Human SWI/SNF Complex Are Enriched in Active Chromatin and Are Associated with the Nuclear Matrix
Biochemical and genetic evidence suggest that the SWI/SNF complex is involved in the remodeling of chromatin during gene activation. We have used antibodies specific against three human subunits of this complex to study its subnuclear localization, as well as its potential association with active chromatin and the nuclear skeleton. Immunofluorescence studies revealed a punctate nuclear labeling...
متن کاملDecondensing the protamine domain for transcription.
Potentiation is the transition from higher-order, transcriptionally silent chromatin to a less condensed state requisite to accommodating the molecular elements required for transcription. To examine the underlying mechanism of potentiation an approximately 13.7-kb mouse protamine domain of increased nuclease sensitivity flanked by 5' and 3' nuclear matrix attachment regions was defined. The po...
متن کاملMAF1, a novel plant protein interacting with matrix attachment region binding protein MFP1, is located at the nuclear envelope.
The interaction of chromatin with the nuclear matrix via matrix attachment region (MAR) DNA is considered to be of fundamental importance for chromatin organization in all eukaryotic cells. MAR binding filament-like protein 1 (MFP1) from tomato is a novel plant protein that specifically binds to MAR DNA. Its filament protein-like structure makes it a likely candidate for a structural component ...
متن کاملConservation of matrix attachment region-binding filament-like protein 1 among higher plants.
The interaction of chromatin with the nuclear matrix via matrix attachment regions (MARs) on the DNA is considered to be of fundamental importance for higher-order chromatin organization and the regulation of gene expression. We have previously isolated a novel nuclear matrix-localized protein (MFP1) from tomato (Lycopersicon esculentum) that preferentially binds to MAR DNA. Tomato MFP1 has a p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 25 7 شماره
صفحات -
تاریخ انتشار 1997